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In this work, the generalized Bautista-Manero-Puig �BMP� model derived from extended irreversible ther-
modynamics �EIT� is used to analyze the coupling of stress with concentration in complex fluids. It is shown
that this model is consistent with previous analyses that predict mechanical and thermodynamic instabilities in
the shear-banding regime. In particular, for simple shear flows, the model presented here predicts the structure
factor in the plane of shear and the onset of instabilities in the gradient-vorticity plane. Furthermore, the model
predicts distinctive features of the models of Brochard–de Gennes and Schmitt et al. as particular cases. For
finite stress relaxation time, the generalized BMP model allows the prediction of transient structures normal to
the vorticity axis. Instabilities are predicted in the regions of high viscosity, which suggest that the induction of
a more viscous phase in a shear-thickening solution can lead the system to instability, in this case, the layering
is predicted perpendicular to the vorticity direction. These transient structural patterns within the shear-
thickening region correspond to spinodal phase separation. When the mechanical and thermodynamic insta-
bilities are uncoupled, the model predictions agree with experiments and with the transient-gel model of
Brochard and de Gennes.
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I. INTRODUCTION

In recent years, much attention has focused on complex
fluids, in which a certain internal structure of the fluid is
strongly affected by a flow field �see, for example, a general
review of material instability in complex fluids, by Goddard
�1��. Experimentally, the research has been done through the
application of scattering techniques to nonequilibrium phe-
nomena under shear. Birefringence and dichroism combined
with rheomechanical data have also been used for sensitive
detection of the spatial anisotropy arising from composition
fluctuations and molecular alignment in complex flows.
Hence the prediction of the associated structure factor is a
key issue of theoretical modeling.

Analogously to critical liquid-gas behavior of simple liq-
uids, shear flow causes a thermal shift in the critical point
�2�. The flow of complex fluids, like wormlike micelles,
polymer and surfactants solutions, or emulsions, can modify
or induce phase transitions, such as the de-mixing transition
found in high molecular weight polymer solutions �3�. One
explanation of these changes in the critical point is based on
a coupling of stress with order parameter fluctuations near
the phase transition �4�. Shear flow suppresses those fluctua-
tions with characteristic times larger than reciprocal of the
shear rate. Generally speaking, in a simple liquid near the
gas-liquid transition, such slow modes tend to be longer
wavelength fluctuations characteristic of critical behavior,
and hence, the suppression of these fluctuations shifts the
critical point to lower temperatures. By contrast, in the de-
mixing of polymer solutions, stress enhances critical fluctua-
tions and raises the de-mixing temperature �5�.

Complex fluids show a variety of flow phenomena such as
flow-induced phase transitions and instabilities �6–9�. These

systems are characterized by a nonmonotonic relation be-
tween the shear stress, �12, and the shear rate, �̇12 �10–12�,
where the subscripts 1, 2, and 3 indicate the velocity, veloc-
ity gradient, and vorticity directions, respectively. As indi-
cated elsewhere, this kind of flow curve exhibits a constant
shear stress with at least two values of shear rate �13–18�.
Consequently, the flow is nonhomogeneous and each phase
is supporting a different shear rate. In the banded regime,
changes in shear rate essentially alter the proportion of the
low and high viscosity bands and the initially homogeneous
flow becomes mechanically unstable.

The kinetics of formation of inhomogeneous flows in the
plateau stress range has distinctive features. The characteris-
tic time for the sigmoidal evolution of the stress toward a
steady-state plateau was found to be much longer than the
reptation time. According to Porte et al. �19�, such kinetics is
typical of a nucleation-and-growth process, usually associ-
ated with first-order phase transitions. In some systems, the
nucleation-and-growth process leads to a kind of spinodal
instability �20�.

The models derived from a criterion of complete me-
chanical instability, corresponding to a negative slope in the
flow curve and in which the medium separates into a fluid
phase of high shear rate and a viscous phase of low shear rate
�the so-called shear-banding instability�, sometimes disagree
with experimental data. It has been observed that the fluid
phase often nucleates in the region of shear rates smaller than
the critical shear rates that bound the negative slope region,
i.e., before the criterion of mechanical instability is reached.
In this regard, both approaches, mechanical instability and
nonequilibrium phase transition, are not incompatible.

To incorporate nonequilibrium phase transitions and rheo-
logically driven instabilities, some theories have been for-
warded, such as that of Schmitt et al. �21�. These authors
proposed a classification scheme for the instabilities arising*Corresponding author; manero@servidor.unam.mx
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from the coupling between flow and concentration, based on
a combination of parameters describing the tendency of sol-
ute molecules to migrate to regions of small or high shear
rates and the variation in viscosity with concentration.

In this work, the generalized Bautista-Manero-Puig
�BMP� model is used to predict the instability regions for
simple shear in the plane of shear and in the gradient-
vorticity plane. The coupling of flow with concentration
naturally arises from the thermodynamic framework, such
that the constitutive equations for the stress, mass flux, and
the evolution equation for structural changes are all coupled
each other to lowest order. The paper analyzes two general
situations: in the first one, the calculation of the structure
factor in the plane of shear is carried out, allowing fluctua-
tions in concentration and stress, wherein the chemical po-
tential is a function of velocity gradient and concentration.
The assumed dependence of chemical potential on velocity
gradient allows for a diffusional driving force between re-
gions of different deformation rate. In the second one, fluc-
tuations in the velocity are considered, and a generalization
of the model of Schmitt et al. is achieved by including stress
relaxation. In this case, the scattering vector lies in the
gradient-vorticity plane. Detailed numerical and analytical
predictions of instability regions along the flow curve of a
cationic wormlike micellar solution �cetyltrimethylammo-
nium tosilate �CTAT�� are exposed.

The paper is structured as follows. In Sec. I, a brief re-
view of the relevant models for the flow-concentration cou-
pling is presented. In Sec. II, the generalized BMP model
with small departures from equilibrium �within the Newton-
ian region� is used to analyze the stress-concentration cou-
pling with the chemical potential being a function of both
concentration and shear rate. In Sec. III, shear rate sweeps
along the intrinsic constitutive curve are considered to deter-
mine the onset for instabilities. In Sec. IV, results for un-
coupled and coupled models are presented. Finally, in Sec. V,
the concluding remarks are given.

II. PAST MODELING OF FLOW-CONCENTRATION
COUPLING

Shear-enhanced concentration fluctuations around the
nonequilibrium critical point �located at the onset of the pla-
teau in the shear stress� can be explained by the coupling of
stress with concentration. This coupling in a transient gel
was first explored theoretically by Brochard and de Gennes
�22�. A transient gel behaves as a simple two-fluid mixture
on time scales long comparable to the stress relaxation time,
but it behaves as a solvated gel on short time scales. The
coupling of stress with concentration causes the growth of
concentration fluctuations observed in the experiments. The
concept of transient gel within a two-fluid mixture has been
the framework to later extensions to the Helfand-Fredrickson
theory �3�, namely, those of Doi and Onuki �23� and Milner
�24,25�. In these models, the stress relaxation time is intro-
duced in the constitutive equations.

The Brochard–de Gennes model predicts two modes for
the stress relaxation of the transient gel. At small wave num-

bers �k̄�, all the weight is in the slowly decaying mode, while

at large k̄, the fast and slow decay rates have comparable
weights when the plateau and the osmotic moduli are com-

parable. The light-scattering signal �for a fixed k̄� as a func-
tion of frequency ��� is the sum of two Lorentzians: a nar-
row Lorentzian of half-width �s and a broad Lorentzian of
width �f. The two modes ��s and �f, slow and fast, respec-
tively� are given by the following approximate forms:

�s = � 1

Dk2 +
DG

D
���−1

, �2.1�

� f =
1

��

+ DGk2, �2.2�

where DG is the diffusion coefficient of the transient gel, D
is the diffusion coefficient of the solution, and �� is the stress
relaxation time. These two modes of the relaxation of the
structure factor have also been observed in micellar systems
�26,27�.

The Helfand-Fredrickson �HF� model examines the effect
of shear on the growth, convection, and diffusion of concen-
tration fluctuations. The velocity and stress fields are then
perturbed by the nonuniform viscosity. The HF model pre-

dicts that the angle-dependent structure factor S�k̄� is given
by

S�k̄� =
kBT

�2f

�c2 − k̂k̂:
��=

�c

, �2.3�

where kB is the Boltzmann constant, T is the absolute tem-

perature, f is the free energy, c is the concentration, k̂ is the

unit vector with direction of the wave vector �k̄�, �= is the
stress tensor, and ��=

�c is the variation in the stress tensor when
a concentration perturbation occurs.

The Helfand-Fredrickson model does not consider stress
relaxation since their constitutive equation is that of a
second-order fluid, appropriate to Rouse dynamics of nonen-
tangled chains.

Milner’s model �24,25� employs a constitutive equation
written in terms of the strain tensor with a relaxation time for
the stress, which leads to two coupled Langevin equations
describing the concentration and the stress fluctuations.
Within a two-fluid approach, the time scale of generation and
decay of concentration fluctuations is predicted to become
shorter than the stress relaxation time. Hence, for wave vec-
tors larger than a characteristic wave number k�, the theory

with �� should predict a structure factor S�k̄ , �̇� that de-

creases with increasing k̄	k� down to S�k̄ ,0�. The model

predicts a peak in the structure factor with k̄�k� along the
45° orientation angle, with a peak width of the order of k�.
The presence of this peak in the structure factor is in striking
agreement with light-scattering experiments in polymer so-
lutions �28�.

Alternative approaches to the coupling of flow and con-
centration in complex fluids have appeared later. Schmitt et
al. �21� gave a description of shear-induced transitions �i.e.,
shear-induced structures or shear-induced phase separation�
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and instabilities arising in complex fluids. This model as-
sumes that the chemical potential �
� in the diffusion equa-
tion is a function of both shear rate and concentration, such

that the component of the mass flux �J̄� can be written as

J2 = − D �c

�x2

+ � �


��̇12
	

�̇12=�̇0

�2v1

�x2
2 , �2.4�

where D=�
 /�c and �12=
IID, where IID is the second in-
variant of the rate of deformation tensor. In the plane of
shear, the following diffusion equation is obtained in terms
of the velocity and concentration fluctuations:

��c

�t
= D�2�c

�x2
2 + � �


��̇12
	 �3�v1

�x2
3 �2.5�

A local constitutive equation assumes that the shear stress
depends on both shear rate and concentration according to

��c,�̇� = ��c0,�̇0� + �d��̇ + � ��

�c
�

c=c0

�c , �2.6�

�d = � ��

��̇
	

�̇=�̇0

. �2.7�

Upon substitution of Eq. �2.6� into the momentum conser-
vation equation, and allowing fluctuations in the velocity to
vary in the x2-x3 plane, the following equation for the veloc-
ity fluctuations is obtained:

�
��v1

�t
= �d

�2�v1

�x2
2 + �3

�2�v1

�x3
2 +

��

�c

��c

�x2
�2.8�

where �3 is the corresponding viscosity of the gradient in the
x1-x3 plane. In Fourier space, the following dispersion equa-
tion is obtained:

� �

k2�2

+ � �

k2���d

�
cos2  +

�3

�
sin2  + D�

+ ��d

�
cos2  +

�3

�
sin2 �D − C cos2  = 0. �2.9�

This equation describes the inhomogeneous shear field
and the different orientations of the shear-induced structures
or shear-induced phase separation with respect to the shear
direction. Here � is the density and  the orientation angle of
the wave vector of the velocity perturbation,

k̄ = k̄2 cos  + k̄3 sin  . �2.10�

The coupling term C that arises in Eq. �2.9� is given by:

C =
1

�
� �


��̇
�

�̇=�̇0

� ��

�c
�

c=c0

. �2.11�

This coupling term represents the feedback of the differ-
ent concentrations and viscosities present in the layered so-
lution during shear flow. The type of instability can be deter-
mined by the sign of C: if it is positive, the sheared solution
is less viscous than the initial one, and if it is negative, the
sheared solution is more viscous.

III. MODEL DERIVED FROM EXTENDED
IRREVERSIBLE THERMODYNAMICS

The equations of the generalized BMP consist of the
upper-convected Maxwell equation for stress coupled to an
evolution equation of a scalar representing the flow-induced
modifications in the internal structure of the fluid, and to the
constitutive equation for the mass flux �29�. The constitutive
equation for the stress tensor �= is expressed as

�0�= + ���=
�

= 2�0D= + �1��J̄�S. �3.1�

Here D=��L=+L=T� /2 is the symmetric part of rate of strain

tensor, ��J̄�S is the symmetric part of the tensor �J̄, L= is the
rate of strain tensor, �0=� /�0 is the structure parameter rep-
resenting the internal structure of the fluid that is modified by
the flow �� is the fluidity and ��0��0

−1� is the fluidity at zero
shear rate�, �1 is a phenomenological coupling coefficient,
and the upper-convected derivative of the tensor �= is defined
as

�
�
=

=
d�=

dt
− �L= · �= + �= · L=T� . �3.2�

The evolution equation of a scalar representing flow-
induced modifications in the internal structure of the fluid is

d�0

dt
=

1

�
�1 − �0� + k��� − �0��=:D= + �3 � · J̄ . �3.3�

The constitutive equation for the mass flux is written as

�0J + �JJ
�

= − �
 + �0 � �0 + �2 � · �= , �3.4�

where the upper-convected derivative of the vector J̄ is J̄
�

=dJ̄ /dt−L= · J̄. Here � and �J are the relaxation time of the
internal structure and the mass flux relaxation time, respec-
tively; K is the kinetic constant; �0, �2, and �3 are phenom-
enological parameters. Equations �3.1�, �3.3�, and �3.4� to-
gether with the conservation equations represent a closed set
of time evolution equations for all the independent variables
chosen to describe the complex fluid. The mass and momen-
tum conservation equations are

dc

dt
= − � · J̄ , �3.5�

�
dū

dt
= − �p + � · �= , �3.6�

ū is the hydrodynamic velocity, p is the pressure, and d
dt

= �
�t + ū · �̄ is the material time derivative. As suggested in Eq.

�2.4�, in what follows, �J2 /�x2 is the only nonzero compo-

nent of the tensor ��J̄�S.

A. First approximation: �J™�� and �\�0

In Eq. �3.4�, it is assumed that the mass flux relaxation
time is negligible compared to that of stress. A stability
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analysis similar to that of Schmitt et al. �21� is carried out to
generalize the Newtonian approach using the equations de-
rived from EIT. Hence, the chemical potential is a function
of the concentration and velocity gradient, i.e., 
=
�c ,�u�.

The assumed dependence of the chemical potential on the
velocity gradient is justified by the fact that in nonhomoge-
neous flows the concentration in two regions with different
shear rate involves a diffusion process. In this case, Eq. �3.4�
can be generalized as follows:

�0J̄ = − D � c-M � �̇ + �0 � �0 + �2 � · �= , �3.7�

where

� �


�c
	

T,P
= D ,

� �


��̇
	 = M .

Our linear stability analysis assumes small departures
from equilibrium, in the range where �→�0. In this case, the
evolution equation for the structure parameter drops out and
the constitutive equations for the mass flux and stress be-
come

J̄ = − D � c − M � �̇ + �2 � · �= , �3.8�

�= + ���=
�

= 2�0D= + �1 � J̄ . �3.9�

Taking the divergence of Eq. �3.8� gives

� · J� = − D�2c − M�2�̇ + �2 � · � · �= . �3.10�

Substitution of Eq. �3.10� into the mass conservation equa-
tion gives

�c

�t
+ ū · �c = D�2c + M�2�̇ − �2Z, Z � ��:�= .

�3.11�

In the following discussion, we consider two cases: the
first case deals with fluctuations in the stress and concentra-
tion, neglecting fluctuations of the mean velocity represent-
ing the macroscopic flow. The second case addresses the
more general situation including fluctuations in the shear rate
or velocity.

Defining the perturbations for the concentration and stress
around the mean value � ,

�c = c − �c , �3.12�

��= = �= − ��= . �3.13�

In terms of the fluctuations of concentration and stress,
Eqs. �3.9� and �3.11� become

��c

�t
+ ū · ��c = D�2�c − �2�Z = − � · �J̄ , �3.14�

��= + ���� �

�t
+ ū · �	��= − �ū� · ��= − ��= · �ūT�

= �2��D= + �1 � �J̄� . �3.15�

Taking the double divergence of Eq. �3.15� yields

�Z + ��� ��Z

�t
+ ū · ��Z�

= ���:D=�� ��

�c
	�c + �1�

2�− D�2�c + �2�Z� ,

�3.16�

where the mass conservation, Eq. �3.14�, and the following
relations have been used:

� · � · �ū · ���ij − ��ū� · ��ij − ��ij · �ūT� = �ū · ���Z ,

�3.17�

� · �2J̄ = �2�� · J̄� , �3.18�

�� = � ��

�c
	�c . �3.19�

Equations �3.14� and �3.16� are the main results of this
section. They share the same form of those given in the
two-fluid model by Doi and Onuki ��23�, Eqs. �6.9� and
�6.10��. If in addition, �1=0 and ��=0, they reduce to

��c

�t
+ ū · ��c = D�2�c − �2�Z , �3.20�

�Z = ���:D=�� ��

�c
	�c , �3.21�

which are of the same form as in the Helfand-Fredrickson
theory �4�. The structure factor consistent with Eqs. �3.20�
and �3.21� is given in Eq. �2.3�. This theory predicts an an-
isotropic growth of the concentration fluctuations. For ex-
ample, along the line k1=k2, the decay of �c is slower than
that along the lines k1=0 and k2=0. In fact, when

����� /�c�k̄k̄ :D=�Dk2, the structure factor is strongly dis-
torted. It is well known that this theory predicts an angle-

dependent scattering intensity S=S�k̄ , �̇�, which is maximum

when k̄ is oriented parallel to the major axis of the tensor
��= /�c in near-critical solutions of entangled systems. A low
shear rates, the solution behaves as a Newtonian fluid and the
major axis of ��= /�c is oriented at 45° with respect to the
flow direction. At this direction, there is a trend toward nar-
rowing the concentration region that opposes the broadening
in the orthogonal direction due to diffusion, and leads to
slower decay of concentration fluctuations.

In the case when the flow is arrested �v=0�, Eqs. �3.14�
and �3.16� become

��c

�t
= D�2�c − �2�Z , �3.22�
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�Z + ��� ��Z

�t
� = − �1�

2��c

�t
. �3.23�

Equations �3.22� and �3.23� describe a relaxation process
that gives rise to the following dispersion equation in Fourier
space:

�iw + Dk2 +
iw�1�2k2

1 + iw��
��c = 0. �3.24�

The two modes of this dispersion equation are consistent
with the slow and fast modes obtained by Brochard-de
Gennes �22� �Eqs. �2.1� and �2.2�� provided that �1=DG and
�2=��, where DG is the diffusion coefficient of the transient
gel. In what follows, this identification of the phenomeno-
logical coefficients is considered throughout the paper. By
Fourier transformation of Eqs. �3.14� and �3.16� and solving
for the concentration fluctuations, the following equation is
obtained:

� iw�1 + iw�� + DG��k
2� + Dk2�1 + iw��� − ��� ��

�c
	k̄k̄:D=

�1 + iw�� + DG��k
2� ��c = 0. �3.25�

The dynamic structure factor associated with Eq. �3.25� is
the following:

S�k̄,w,�̇� = S�k̄�
1 + B�k2

iw�1 + B�k2� + �Dk2 + ��� ���

�c
	k̄k̄:D=� ,

�3.26�

where B�=
DG��

1+iw��
and ��= �

1+iw��
.

The corresponding static structure factor is

S�k̄,�̇� = S�k̄�
1 + DG��k

2

�D − ��� ��

�c
	k̂k̂:D=� . �3.27�

This equation predicts the presence of a peak in the struc-
ture factor, in agreement with the Milner model �25�. Equa-
tion �3.27� contains the stress relaxation time, allowing the
induction of stresses in the entangled micellar solution be-
fore the concentration fluctuations dissipate, as they relax
faster than the stress.

The adiabatic approximation assumes that the polymer
elastic stress relaxes quickly to a value consistent with a
steady state at a given local concentration and shear rate.
This approximation breaks down when the time scale for the
inception and termination of concentration fluctuations be-
come shorter than the stress relaxation time. According to
Milner �25�, if the stress responding with a finite response
time �� is unable to follow the fast concentration fluctuations
at high wave numbers, then the mechanism for the concen-
tration fluctuation growth is less effective than the adiabatic
estimate. Then it is necessary to take into account the stress
dynamics where the time derivative of the stress is not zero.

The structure factor given in Eq. �3.27� indicates that for
wave numbers larger than the magnitude of a characteristic
wave vector k�, corresponding to the crossover of time scales
such that

D�k��2 = ��
−1, �3.28�

concentration fluctuations relax faster than the stress and in-
duce stresses in the entangled micellar network before they
dissipate. In fact, Eq. �3.27� reduces to Eq. �2.3� at small
wave numbers �adiabatic approximation�. Equation �2.3� ac-
counts only for stress-induced diffusion with dependence on

the orientation, but not on the magnitude of k̄. For large
values of the wave number, the structure factor Eq. �3.27�
shows a dependence on the magnitude of k̄ �see numerator of
Eq. �3.27��. These predictions are in accord with experi-
ments.

It should also be mentioned that the structure factor given
in Eq. �3.27� does not include convection. The first contribu-
tion of affine convection, as discussed by Milner �25�, en-
hances scattering at 135° and suppresses fluctuations at 45°,
exactly opposite to the effect of the term resulting from the
concentration dependent viscosity.

B. Transient gel

Finally, even in the absence of shear flow, concentration
and stress are dynamically coupled. Equation �3.26� becomes

S�k̄,w� = S�k̄�
1 + B�k2

iw�1 + B�k2� + Dk2 . �3.29�

This expression gives the dispersion relation correspond-
ing to Eq. �3.24�. In transient studies, such as cessation of
steady shearing, one can discern both the k-independent vis-
coelastic time scale associated with the growth of viscoelas-
tic stresses, and the k-dependent diffusive time scale. These
time scales are provided by the roots of the dispersion Eq.
�3.24�. Furthermore, the basic physics inherent in Eq. �3.26�
is such that on time scales short compared to the stress re-
laxation time, the strain responds as if the solution were a
gel, with a modulus equal to the plateau modulus. The length
scale below, which is an important effect, is given by com-
paring the rate of solvent diffusion in the concentrate solu-
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tion, Dk2, with the stress relaxation time ��. The crossover
length scale has been called the “magic length.” This argu-
ment illustrates that our thermodynamic description is com-
patible with both, the two-fluid theory and the H-F approach.

C. Fluctuations in the concentration, stress and velocity

We now describe the more general case in which fluctua-
tions in the velocity are considered, in the region where in-
ertia is negligible at low Reynolds numbers. The linear mo-
mentum balance for velocity fluctuations is

�
��ū

�t
= � · ��= . �3.30�

Taking the divergence of the stress constitutive Eq. �3.9�,
bearing in mind that the stress is function of the shear rate
and concentration, we obtain

� · ��= + ��� �

�t
� · ��=	 = ���c��2�ū + � ��=�c�

�c
	 � �c

+ DG�2�J̄� . �3.31�

By taking the Laplacian in the mass flux constitutive Eq.
�3.8� and upon substitution the resulting expression in Eq.
�3.31� gives

� · ��= + ��� �

�t
� · ��=	

= ��c��2�ū + � ��=�c�
�c

	 � �c

+ DG�− D�2 � �c − M�2 � ��̇ + ���
2�� · ��=�� .

�3.32�

In simple shear flow only fluctuations in c and u are
considered to occur in the �2–3� plane; the dependency of
fluctuations along the flow direction is then zero, i.e.,
��c /�x1=0, ��u1 /�x1=0. The flow direction component of
Eq. �3.32� is

�� · ��=�1 + ��

�

�t
�� · ��=�1 = �2

�2�u1

�x2
2 + �3

�2�u1

�x3
2 +

��12

�c

��c

�x2

+ ��DG
�

�x2
2 �� · ��=�1 �3.33�

Summarizing, the set of equations within the linear ap-
proximation is

��c

�t
= D�2�c

�x2
2 + M

�3�u1

�x2
3 − ���Z �3.11��

�Z + ��� ��Z

�t
� = � �3u1

�x1 � x2
2	� ��

�c
	�c + DG

�2

�x2
2

��c

�t
,

�3.16��

�� ��u1

�t
	 = �� · ��=�1, �3.30��

�� · ��=�1 + ��

�

�t
�� · ��=�1 = �2

�2�u1

�x2
2 + �3

�2�u1

�x3
2

+ � ��12

�c
	 ��c

�x2

+ ��DG
�2

�x2
2 �� · ��=�1.

�3.33��

The model of Schmitt et al. can be obtained if ��=0 and
DG=0. Using the following perturbations in Fourier space,

with wave vector k̄= �0,k cos ê2 ,k sin ê3�,

�u1 = �u0 exp�ik̄ · r̄ + wt� , �3.34�

�c = �c0 exp�ik̄ · r̄ + wt� . �3.35�

In Fourier space the above equations can be written as

�

�t
ȳ = A=ȳ , �3.36�

where ȳ is the vector of dependent variables, namely,

ȳ =�
��̇

�Z

�Y1

�c
� Y1 =

��� · ��=�1

�x2
. �3.37�

The stability matrix A= of Eq. �3.36� determines the fate of
the fluctuations,

A= =�
0 0 1 0

− DGMk4 cos2 

��
�− 1 + DGk2

��
	 0

− DGk4D

��

− ��2 cos2  + �3 sin2 �
k2

���

0 �− 1

��

−
DG��k

2

��
	 � ��12

�c
	 k2

���

cos2 

− Mk2 cos2  − �� 0 − Dk2

� . �3.38�
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Its eigenvalues obey

wk̄,�v� k̄,� = A=k̄v� k̄,� �3.39�

Here � is the mode index. Following Eqs. �3.38� and
�3.39�, a positive eigenvalue wk̄,� indicates an unstable mode
that grows exponentially in time. The eigenvalues wk̄,� ver-

sus k̄ define a multibranched dispersion relation. Two cases
are considered for the characteristic polynomial of A=. When

the scattering angle is zero �k̄ is parallel to the velocity gra-
dient�,

w4 + w3�Dk2 +
2

��

+ 2DG	 + w2� 1

��
2 +

2k2

��

�D + DG� +
k2

���
�2

+ k4�DDG + DG
2 �	 + w� k2

��
2�

�D� + �2� +
k4D
���

�DG�

+ �2� +
k4D
���

�2 −
Ck4

��
	 +

k4D
��

2�
�2 −

Ck4

��
2 = 0, �3.40�

and when  is equal to � /2, i.e., k̄ is parallel to the vorticity
direction,

w4 + w3�Dk2 +
2

��

+ 2DG	 + w2� 1

��
2 +

2k2

��

�D + DG� +
k2

���
�3

+ k4�DDG + DG
2 �	 + w� k2

��
2�

�D� + �3� +
k4DG

���
�D�

+ �3� +
k4D
���

�3	 +
k4D�3

��
2�

= 0. �3.41�

In Eq. �3.40�, C= �
��12

�c � M
� = 1

� �
��12

�c �� �

��̇

� is the coupling pa-
rameter defined in the model of Schmitt et al. Once again,
if ��=0, Schmitt et al. dispersion Eq. �2.9� is recovered.

The coupling term C represents the feedback of the dif-
ferent concentrations and viscosities that are present in a lay-
ered solution during shear flow. The relative viscosity of the
sheared solution determines the type of instability. If the sign
of the coupling term is positive �C	0�, the induced phase is
less viscous �shear thinning� than the initial one. If �C�0�,
the induced phase is more viscous �shear thickening�. In this
last case, the diffusion coefficient, D, determines the type of
instability because concentration and flow inhomogeneities

will develop either parallel to the vorticity direction, k̄ �e3, as
found by Fischer et al. �30� or parallel to the flow gradient,

k̄ �e2, as found by Liu and Pine �31�. As consequence, the
coexisting phases experience different stresses but similarly
sheared and pure mechanical �D	0� and spinodal �D�0�
instability can be observed. Notice that if the angle is 90°,
the mechanical and thermodynamic instabilities are decou-
pled, and hence Eq. �3.41� can be recovered if C=0 and
write �3 instead of �2 in Eq. �3.40�.

D. Analytical approximations

The dispersion equation for zero scattering angle �3.40�
has four roots, depending on the magnitude of the wave vec-
tor. At high frequencies, terms of order w1 and w0 can be

neglected, resulting in the following asymptotic expressions
for large and small k, respectively: For k→0

� f1 = − 1/�� �3.42�

and for k→�

� f2 = − �DG + D�k2 �3.43�

At low frequencies, terms of order w4 and w3 are ne-
glected and the following asymptotic limits are obtained: For
k→0

�s1 = − �D + �2/��k2 �3.44�

and for k→�, the slow mode can be obtained from the roots
of the following equation:

a�����2 + b����� + h = 0, �3.45�

where

a = DG�DG + D� ,

b = DG�D + �2/�� + �D�2/� − C� ,

h = D�2/� − C .

In the particular case where C→0 �no coupling�, the follow-
ing root is obtained:

�S2 = −

��D +
�2

�
	 +

D
DG

�2

�
�

���D + DG�
. �3.46�

If DG�D and �2→0,

�S2 = −
1

��

D
DG

�3.47�

is obtained.
The four roots of the dispersion equation �Eqs.

�3.42�–�3.44� and �3.47�� agree with those obtained by
Brochard-de Gennes for a transient gel, Eqs. �2.1� and �2.2�.
This prediction is here shown for the first time, i.e., by in-
troducing stress relaxation in the uncoupled case, the disper-
sion equation obtained from the generalization of the model
of Schmitt et al. agrees with the transient-gel model of
Brochard–de Gennes. Furthermore, the case of Schmitt et al.
can be recovered from the dispersion Eq. �3.40� in the limit
where the relaxation time tends to zero, i.e., for k→0,

�1 = − �D + �2/��k2 �3.44��

and for k→�,

�2 = −
�D�2/� − C�k2

�D + �2/��
�3.48�

The two roots �Eqs. �3.44�� and �3.48�� obtained for the
Newtonian limit agree with the instability scheme developed
by Schmitt et al., namely:

�a� If C and D are positive, the first instability appears
when C��2 /� �numerator of Eq. �3.48� is negative-and de-
nominator is positive�.
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�b� If C is negative and D positive, the other instability
appears when D+�2 /��0, with positive numerator in Eq.
�3.48�. Hence, �2 should be negative, i.e., a mechanical in-
stability occurs.

�c� If C and D are negative, Eq. �3.48� marks the insta-
bility with �2 negative or positive. The numerator in Eq.
�3.48� is then positive.

In the case of  equal to � /2, no coupling exists �C=0�
and Eq. �3.48� is replaced by

k → � ,

�2 = −
D�3/�

D + �3/�
k2 �3.49�

and hence instabilities appear when both D and �3 are nega-
tive. They lie along the vorticity axis.

When stress relaxation is included to generalize the model
of Schmitt et al., Eqs. �3.42� and �3.43� ensure stability at
high frequencies for all wave numbers. In the low-frequency
region, Eq. �3.44� is identical to Eq. �3.44�� at low wave
numbers, and so instabilities appear when D+�2 /��0. At
high wave numbers, instead, the fourth root of Eq. �3.45� for
C�0 and Dg�D is

�S2 = −
��D +

�2

�
	DG + �D�2

�
− C	�

DG
2 ��

. �3.50�

Instead of Eq. �3.48�, where the terms in parenthesis are
divided, in Eq. �3.50� they are summing. Therefore, the in-
stabilities depend not only on the sign of the numerator and
denominator, but also on their magnitudes. Since the de-
nominator is always positive, the system is unstable when
the numerator becomes negative. The following cases are
suggested:

�a�

�D�2

�
− C	 � 0 and �D +

�2

�
	 � 0. �3.51�

�b�

�D +
�2

�
�DG � �D�2

�
− C�, �D�2

�
− C	 � 0.

�3.52�

�c�

�D +
�2

�
�DG 	 �D�2

�
− C�, �D +

�2

�
	 � 0.

�3.53�

Accordingly, the criteria for instability holds if C	D
�2 /�, together with the following cases:

Case 1: C	0, D	0. In this case, the coupling of flow
with concentration dominates and �b� applies. Instability oc-
curs in the regions along the flow curve for positive or nega-
tive �2. As shown later in the numerical results, this instabil-
ity is also present even in the high shear rate region past the
plateau. Fluctuations in concentration induce fluctuations in

the shear rate, which themselves amplify the concentration
fluctuations. Since this term is larger than that representing
the mechanical and thermodynamic instabilities, the instabil-
ity occurs before any spinodal phase separation and in the
shear rate range previous to the negative slope that leads to
the mechanical instability.

Case 2: C	0, D�0. If in addition, D	�2 /�, case �a�
applies and the system is always unstable. In contrast to the
Newtonian analysis, case �a� is different. The combination of
positive C and negative D means that the induced phase has
lower viscosity but the system is unstable.

Case 3: C�0, D	0. In case �c�, the mechanical or ther-
modynamic instabilities decouple, dominating over the
coupled instability D	�2 /� and occur separately. In this
particular case, for the instability to occur, it is necessary that
�2 /�	D and that �2 /� be negative. The instability will be
purely mechanical �along the negative slope of the flow
curve�.

Case 4: C�0, D�0. Here �c� holds again. The instability
occurs when D	�2 /�, and it will be of the thermodynamic
type. �2 may be positive or negative, which means that a
thermodynamic instability may occur along the entire flow
curve. The decoupling coincides with that of a thermody-
namic instability and that is positioned along the vorticity
direction. Again, in accordance to the Brochard–de Gennes
picture, the peak corresponding to the emergence of a struc-
ture is absent. Instead, the model predicts metastable regions
where the gel is transient, and this prediction agrees with
experimental data.

IV. NUMERICAL RESULTS: INTRINSIC
CONSTITUTIVE CURVE

Cetyltrimethylammonium tosilate �CTAT� is a viscoelastic
wormlike micellar solution that presents instabilities under
simple shear �32�. The BMP model can predict the associated
nonmonotonic constitutive curve under steady simple shear.
In this case, Eqs. �3.1� and �3.3� lead to the following ex-

pression for the fluidity under homogeneous flow �J̄=0�:

�2 − �0� − k0���� − ���̇12
2 �1 + ��̇12� = 0, �4.1�

where k0 is the kinetic constant for structure breakdown and
� is the shear-banding intensity parameter. The parameters
required to predict the constitutive curve, �0, ��, k0, �, and
� are estimated from separate rheological experiments and
from the criterion to set the stress plateau �33�. The values of
these parameters �disclosed in Table I� have been reported by

TABLE I. Experimental values of the model parameters for
various CTAT concentrations �33,34�.

CTAT 2% 5% 10% 20%

�0 �Pa s�−1 0.06 0.02 0.01 0.004

�� �Pa s�−1 13 11 10 4

k0 �Pa�−1 1�10−3 2�10−4 3�10−5 2�10−6

�� �s� 0.1 0.2 0.3 0.35

� �s� 0.004 0.009 0.01 0.03
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Bautista et al. �33� for the CTAT system at various surfactant
concentrations.

Equation �4.1� defines a set of intrinsic constitutive curves
�dashed lines in Fig. 1�, one for each CTAT concentration.
The nonmonotonicity of the constitutive curves is deter-
mined by the value of the shear banding intensity parameter
�, which decreases as the concentration is reduced or the
temperature is increased. Along this trend, the region of
negative slope narrows, terminating in a critical point at
2 wt. % CTAT. The same qualitative trend has been ob-
served in the cetylpyridium chloride �CPCl�/sodium salyci-
late �NaSal�/brine/system �33�.

A. Results: uncoupled model

To obtain numerical results, the background homogeneous
shear state is tracked upwards and downwards sweeping
along the intrinsic constitutive curve. The spinodal is deter-
mined when the eigenvalue wk̄,� of Eq. �3.39� with the larg-
est real part crosses the imaginary axis in the positive direc-
tion. Values of C and D were chosen considering that a
single unstable eigenmode with positive real part is obtained,
and for this reason C and D are first given positives values.

In the uncoupled limit C=0, fluctuations in the mechani-
cal variables decouple from the concentration. The instability

is mechanical and the spinodal signals the region where the
negative slope of the constitutive curve holds.

Figure 1�a� shows the numerical results in the uncoupled
case for the spinodal �shaded region in Fig. 1�a��. For the 5,
10, and 20 wt. % concentrations the unstable zone coincides
with the negative slope. The negative region disappears at
the critical concentration �2 wt. % CTAT� as expected. This
behavior is like those of near-critical systems.

Analytically, the instability can be obtained from Eq.
�3.39�, written as

wk
4 + a1wk

3 + a2wk
2 + a3wk + a4 = 0, �4.2�

where the ai �i=1, . . . ,4� are the coefficients of the equation
and the independent term is a4=Det A=. The condition for the
unstable zones is determined by the sign of the determinant
of A=, i.e., Det A=�0 �19�.

a4 = Det A= = � k4D
���

��2 −
Ck4

��
2 . �4.3�

In the uncoupled limit C=0, and hence the second term of
right-hand side of Eq. �4.3� vanishes. If D is positive, the
condition for instability is determined by the negative value
of �2. Since the sign of �2 is related with the vanishing
derivative of the stress with respect to the shear rate, then the
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FIG. 1. Intrinsic constitutive curves for 20, 10, 5 and 2 wt. % CTAT solutions. �a� Unstable regions for the uncoupled model. �b� Coupled
model, C=1�10−11 and D=3.5�10−9 �c� Coupled model, C=1�10−5 and D=3.5�10−4. �d� Coupled model with negative C and D, C
=−1�10−11 and D=−3.5�10−9. �e� Coupled model with negative C and D, C=−1�10−5 and D=−3.5�10−4. �Units of C are cm4 /s2 and
those of D are cm2 /s�.

THERMODYNAMIC APPROACH TO RHEOLOGY OF COMPLEX… PHYSICAL REVIEW E 80, 036313 �2009�

036313-9



instability appears when the stress in the constitutive curve is
decreasing with the shear rate �purely mechanical instabil-
ity�.

B. Dispersion relation

Consideration is now given to the dispersion relation in
the unstable region for the uncoupled limit. The dispersion
relation was obtained from the eigenvalues of Eq. �4.2�. Nu-
merical results show that only one of the four eigenvalues
was real and positive in the negative slope region. For pure
mechanical instability, the positive dispersion branch is
shown in Fig. 2�a� and in Fig. 3 for a 20 wt. % CTAT solu-
tion. Figure 3 shows that the growth rate of w tends to zero
as k→0, and tends to a plateau as k→�. This may be un-
derstood via the analytical results obtained from the charac-
teristic equation of matrix A= �Eq. �4.2��, and the roots of
which have been discussed in the analytical approximations
section. The branch at low wave numbers is purely diffusive,
in agreement with Eq. �3.44�. As the wave number increases,
the dispersion curve becomes independent of the wave num-
ber, in agreement with Eq. �3.47�. Agreement with the ana-
lytical approximation �illustrated as a dashed line� is dis-
closed in Fig. 3.

C. Results: coupled model

For the coupled model �C�0�, the fluctuations of concen-
tration are coupled with the flow. For this case there are two
possibilities: C	0 and C�0. The value of C and D were

assigned considering that only a single unstable eigenmode
with positive real part was obtained.

The numerical results are exposed in Figs. 1�b�–1�e�.
When the value of the parameter C is small, the spinodal is
shifted only slightly to lower shear rates �shaded region in
Fig. 1�b��, so that the stability in this region is still essentially
mechanical. However, a new result is the large unstable re-
gion predicted along the second Newtonian branch of the
flow curve at high shear rates. When C and D increase, the
shift of the spinodal increases drastically to lower shear rates
�shaded region in Fig. 1�c��. Instability sets in at very low
shear rates, within the first Newtonian region, for which the
regime of negative constitutive slope is irrelevant. Notice
that the instability span is larger as the solution is more di-
luted.

Results for both positive C and D imply that the coupled
flow-concentration instability occurs along the entire flow
curve. Concentration fluctuations induce shear rate fluctua-
tions, which in a feedback process generate an amplification
of concentration fluctuations. The sheared solution is less
viscous than the initial one and band structures perpendicular
to the velocity-gradient direction appear, as found by Liu and
Pine �31�.

Remarkably, Fig. 1�c� further shows that the second New-
tonian region also presents instability for C and D positive.
In this case, the region of instability covers the whole second
Newtonian region, the extent of which has not been pre-
dicted before.

When the stress is decreasing with shear rate, the instabil-
ity is mechanical, and the uncoupled model coincides with
case 3, i.e., a positive diffusion coefficient but the coupling
parameter is negative.

In Figs. 1�d� and 1�e�, results for negative C and D are
presented. This situation corresponds to case 4. In Fig. 1�d�,
besides the region of negative slope, instability regions along
the first Newtonian regime for the more concentrated solu-
tions appear. For this case, the second Newtonian region is
stable. Hence, regions of higher viscosity are unstable,
whereas those with lower viscosity tend to be stable. Since C
is negative, the induced phase has higher viscosity, which
leads the system to instability. When C and D increase, in-
stability sets in not only the low shear and more concentrated
regimes, but also in the second Newtonian region.

In the case of the CTAT solution considered here, no shear
thickening is observed at the concentration ranges given in

FIG. 2. Dispersion relations for 20 wt. % CTAT for various regimes discussed in the text: �a� Uncoupled model, C=0, �b� Coupled
model C=1�10−5, �c� Coupled model C=7.13�10−3. Units of C are cm4 /s2, k�cm−1�, �̇�s−1�, w�s−1�.
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FIG. 3. Dispersion regime for 20 wt. % CTAT solution, C=0,
�̇=0.034 �s−1�.
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Table I, and only it is observed at lower concentrations. The
same stability analysis could be performed with the shear-
thickening solution, giving rise to a more unstable high vis-
cosity phase �not shown�, which would agree with the insta-
bility detected by Fischer et al. �30�. In this case, shear
induces a spinodal phase separation and the layering in this
case will be parallel to the vorticity direction.

This latter instability case has been reported by Fischer et
al. �30� in the aqueous surfactant solution of cetylpyridinium
chloride and sodium salicylate, investigated in a transparent
strain-controlled Taylor-Couette flow cell. This particular
wormlike micellar solution exhibits shear thinning first, at
low shear rates, and subsequently, at high shear rates, shear
thickening. Once the shear-thickening regime is reached, a
transient phase separation of the solution into turbid and
clear ringlike patterns oriented perpendicular to the vorticity
axis are observed. In the shear-thickening regime, the small-
angle light scattering exhibits distinctive butterfly patterns.
These and the ringlike patterns oriented perpendicular to the
vorticity axis are consequences of the structural changes of
the oriented micellar aggregates �flow-induced nonequilib-
rium phase transition� and can be explained, to our knowl-
edge for the first time, in the context of the present model.

D. Dispersion relation: coupled model

Figures 2�b� and 2�c� show the dispersion relations for
two cases of the coupled model. The behavior of the grow
rate of w is similar to that of the uncoupled case at constant
shear rate, see Fig. 2�a�, since, in the low wave-number re-
gion the behavior is diffusive, whereas when k→�, w tends
to a wide plateau. However, the behavior of w against shear
rate is different to that of the uncoupled case. The uncoupled
model the value of w initially grows with shear rate up to a
maximum, after which the value of w begins to decrease with
shear rate down to zero, see Fig. 2�a�. On the contrary, the
coupled model in Fig. 2�b� shows that when k→�, w first
increases with shear-rate up to a maximum, after which w
decreases slightly and never goes down to zero. Instead, w
tends to a constant plateau independent of shear rate. In Fig.
2�c� in the regime where k→�, w initially grows with shear
rate up to a plateau, where w again remains constant inde-
pendent of shear rate. Interpretation of the uncoupled case
resorts to the only possible mechanical instability. This
solely appears in the zone where the stress is decreasing with
shear rate. For the coupled case two types of instabilities
occur, one when the stress is increasing with shear rate,
where a feedback process generates an amplification of con-
centration fluctuations in both the first and second Newton-
ian regimes. The other instability appears in the regions of
higher induced viscosity. In the latter case, shear induces
spinodal phase separation in the vorticity direction. These
instabilities are the origin of the dispersion relation shown in
Figs. 2�b� and 2�c�.

V. CONCLUSIONS

In this work, the analysis of instabilities generated by the
flow-concentration coupling in wormlike micellar systems is

performed with the generalized BMP model, which consists
in a set of constitutive relationships derived within the EIT
formalism. By assuming that the chemical potential is a
function of both the concentration and velocity gradient, a
coupling between the concentration and momentum equa-
tions is allowed. The generalized BMP model permits a fur-
ther generalization of the model of Schmitt et al. that in-
cludes stress relaxation and the diffusion coefficient of the
transient gel.

The generalized version of the BMP model allows for
couplings between the stress constitutive equation, the equa-
tion of mass diffusion, and the evolution equation for the
structure variable, in this case, the fluidity. The coupling of
flow with concentration arises naturally following the EIT
methodology, and further we added the functionality of the
chemical potential with both shear rate and concentration to
generalize the model of Schmitt et al. to systems where
stress relaxation is important. The static structure factor was
obtained in the velocity-gradient plane, and in particular, the
HF adiabatic approximation is recovered as the wave number
becomes small. This structure factor describes a peak as the
stress relaxation characteristic time becomes comparable to
that of the diffusive mechanism at low wave numbers. For
high wave numbers, this factor depends on the magnitude of
k and it is consistent with that developed by Milner using the
two-fluid approach. Moreover, if the flow is arrested, the
relaxation of the structure factor leads to the dispersion rela-
tion of the transient-gel theory of Brochard–de Gennes. Al-
lowing for fluctuations in the velocity and concentrations in
the gradient-vorticity plane, we generalize the approach of
Schmitt et al. and predict a dispersion relation at high wave
numbers which does not goes to zero, but attains a plateau at
moderate-to-high shear rates.

As the diffusion coefficient of the gel and the stress relax-
ation time tend to zero, the adiabatic approximation of the
model of Schmitt et al. is again recovered. The fact that the
Brochard–de Gennes model for the transient gel is recovered
in the uncoupled case �see the four roots of the dispersion
equation when C=0� agrees with the experiments by Fischer
et al. They observed transient structures being formed induc-
ing layering normal to the vorticity axis. These transient
structural patterns within the shear-thickening region corre-
spond to spinodal phase separation in the Schmitt case where
both D and C are negative. The transient nature of the insta-
bility �transient gel�, together with a nonequilibrium phase
transition where the mechanical and thermodynamic insta-
bilities are decoupled, forms a picture that combines the
physical intuition of the transient gel with the thermody-
namic instability scheme, consisting in layers of fluid normal
to the vorticity direction. This constitutes a contribution of
the model to the understanding of the presence and genera-
tion of instabilities along the vorticity axis.

Numerical results show that in absence of coupling be-
tween flow and concentration, the instability is purely me-
chanical and the spinodal is located around the negative
slope region, as expected. But when the flow-concentration
coupling is present, three types of instability arise. Besides
the purely mechanical instability along the negative slope,
the other one occurs when the stress is increasing with the
shear rate �first and second Newtonian regions�. In this case
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there is a feedback process between the concentration fluc-
tuations and shear rate fluctuations, which generates an am-
plification of concentration fluctuations. The consequence is
that the sheared solution is less viscous than the initial one
and band structures perpendicular to velocity gradient ap-
pear. An exceptionally wide instability region is predicted in
the second Newtonian region, the extent of which has not
been predicted before.

Finally, instabilities are predicted for negative feedback
�C�0� and negative diffusion coefficient in the regions of
high viscosity, which suggest that the induction of a more
viscous phase in a shear-thickening solution can lead the
system to instability, in this case, the layering is predicted
perpendicular to the vorticity direction. Thin layers with
higher viscosity than the initial fluid appear, similar to a spin-

odal phase separation in the vorticity direction. Since the
mechanical and thermodynamic instabilities are uncoupled,
the instability observed in the experiments agrees with the
transient-gel picture.

The instability analysis exposed here has the ingredients
to predict the instability patterns of a shear-thickening solu-
tion. This approach will enable a direct comparison with ex-
periments. Results will be presented in a forthcoming publi-
cation.
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